Search results for "Solid retention time"

showing 4 items of 4 documents

The effect of the solids and hydraulic retention time on moving bed membrane bioreactor performance

2018

Abstract The aim of the present paper was to investigate the effect of solids (SRT) and hydraulic (HRT) retention time on Integrated Fixed Film Activated Sludge (IFAS) University of Cape Town (UCT) membrane Bioreactor (MBR). In particular, three different pairs of SRT and HRT values were analysed, namely, Phase I 56 d/30 h, Phase II 31 d/15 h and Phase III 7 d/13 h. The short-term effect of these three SRT/HRT conditions was assessed by analysing several system performance indicators: organic carbon and biological nutrient (nitrogen and phosphorus) removal, biomass respiratory activity, activated sludge filtration properties and membrane fouling. The results showed that the decrease of SRT/…

DenitrificationHydraulic retention timeIntegrated fixed film activated sludgeStrategy and Management0208 environmental biotechnology02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural sciencesIndustrial and Manufacturing EngineeringBiological phosphorus removal0105 earth and related environmental sciencesGeneral Environmental ScienceChromatography2300Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingBuilding and ConstructionNitrogen removalPulp and paper industryMembrane BioReactor020801 environmental engineeringStrategy and Management1409 Tourism Leisure and Hospitality ManagementEnhanced biological phosphorus removalActivated sludgeVolatile suspended solidsNitrificationSolid retention timehuman activitiesHydraulic retention timeJournal of Cleaner Production
researchProduct

Optimization of the performance of an air–cathode MFC by changing solid retention time

2017

BACKGROUND This work is focused on the optimization of the performances of air-cathode microbial fuel cells (MFC) by changing the solid retention time (SRT) of the suspended biomass culture. RESULTS Five MFCs inoculated with activated sludge obtained from a municipal wastewater treatment plant were fed with a highly-concentrated acetate solution (10 000 ppm COD) and operated over two-month tests in order to determine how SRT may influence the performances of the bio-electrogenic cells. The MFC operated at SRTs of 2.5 days was found to outperform the other cells, operated at SRT of 1.4, 5.0, 7.4 and 10.0 days. In order to evaluate the possibility of using SRT as a manipulated parameter for t…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicisolid retention time (SRT)acetate air-cathodeMicrobial fuel cellsSettore ING-IND/27 - Chimica Industriale E TecnologicaSludge agePilas de combustible microbianasmicrobial fuel cellSolid retention time (SRT)Acetate air-cathodeAcetato de aire-cátodoTiempo de retención de sólidos (SRT)human activitiessludge ageEdad del lodo
researchProduct

Characterization of wastewater and biomass activity in a membrane bioreactor using respirometric techniques

2010

Over the last two decades, Membrane Bioreactors (MBRs) emerged even more for wastewater treatment, ensuring high removal efficiencies as well as very small footprint required. Indeed, in this kind of process, a modification in biomass activity and viability can exist compared to that of a conventional activated sludge (CAS) process. In this context, respirometric analysis represents a reliable tool in order to evaluate the actual biomass kinetic parameters, to insert in mathematical models in the design phase, as well as to monitor the biomass viability, especially when these processes are operated with high sludge retention time (SRT) values. The paper presents some results of respirometri…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleRespirometric analysis biokinetic coefficients Membrane Bioreactor (MBR) wastewater treatment Solid Retention Time (SRT) pilot plant experiment
researchProduct

The influence of sludge retention time on mixed culture microbial fuel cell start-ups

2017

Abstract In this work, the start-ups of air-cathode microbial fuel cells (MFCs) seeds with conventional activated sludge cultivated at different solid retention times (SRTs) are compared. A clear influence of the SRT of the inoculum was observed, corresponding to an SRT of 10 days to the higher current density exerted, about 0.2 A m −2 . This observation points out that, in this type of electrochemical device, it is recommended to use high SRT seeds. The work also points out that in order to promote an efficient start-up, it is not only necessary to use high SRT seeds, but also to feed a high COD concentration. When feeding 10,000 ppm COD and keeping SRT of 10 d differences of current densi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEnvironmental EngineeringMicrobial fuel cellMicrobial fuel cellAir-cathodeBiomedical EngineeringBioengineering02 engineering and technology010501 environmental sciencesSolid retention time Microbial fuel cell Air-cathode Acetate01 natural sciencesMixed culture0105 earth and related environmental sciencesSolid retention timChemistryAir cathodeAcetateEnvironmental engineeringSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyPulp and paper industryStart upSolid retention time Microbial fuel cell Air-cathode AcetateActivated sludge0210 nano-technologyRetention timehuman activitiesBiotechnology
researchProduct